
Speed Up Query Execution By Pushdown in AsterixDB

Yue Gong
Department of Computer Science and Engineering

Southern University of Science and Technology
Email: yvetteyue1998@outlook.com

Wail Alkowaileet
Donald Bren School of Information and Computer Sciences

University of California, Irvine
Email: wael.y.k@gmail.com

1. Abstract

In the original query execution model of AsterixDB,
incomplete pushdown of query plan will bring significant
virtual function call costs between operators. To tackle this
problem, we explore three patterns of queries on which
the complete pushdown can have an up to 34.6% speed-
up. More specifically, we push execution logic down to the
data-scan stage as much as possible to reduce the overall
number of operators.

2. Introduction

AsterixDB is a Big Data Management System (BDMS).
Its query execution engine adopts the iterator-style model.
To evaluate a query, the engine will compile it into a series
of operators(e.g. aggregation, filter, projection). Each opera-
tor will implement a next() method to produce intermediate
results to the upper operator or the final results. The whole
process is illustrated in figure 1.

Figure 1. iterator-style model

The Iterator-style model provides great programming
flexibility since it decouples operators. Thus, we can im-
plement any query by combining these operators. However,
the iterator-style model is clearly not CPU-friendly. Since
next() is a virtual function, calling it again and again brings
heavy overhead. As long as IO is the bound, it works fine.
However, as storage devices become faster and faster today,
utilizing CPU better shows more and more importance.[1]

AsterixDB has made some progress to improve the
traditional volcano iterator model. Instead of tuple-at-a-time
implementation, it introduces the concept of frame which
serves as the unit of data to be passed between operators.
By the batch-at-a-time implementation, it reduces the time
of calling next() functions.[2]

But can we make it further? The answer is YES. Besides
using batch-processing, reducing the number of operators
can also decrease the time of calling virtual functions.

To accomplish the goal of reducing the number of op-
erators, we combine operators for queries matching certain
patterns. By reducing the number of operators, the perfor-
mance of query execution can be improved significantly.

3. Methodology

For queries with certain patterns, there are corresponding
patterns in their query plans. Thus, by detecting different
patterns in the query plan, we can recognize different queries
and rewrite them to the optimum. We mainly explore three
kinds of query patterns where we could make complete
pushdown.

3.1. Pattern 1: Query with Field-access and Filter

The first pattern is for query with field-access (e.g.
tweets.user) or filter. For this kind of query, we will push
both the filter and field accesses to the data-scan stage.

Figure 2. query pattern 1

Here is a query which satisfies pattern 1. And the query
plan before pushdown is illustrated in figure 4.

Figure 3. query pattern 1 example

In the original query plan, data-scan() only does one
thing which is to scan the data-set Tweets and pass the data
to upper layer. However, it is clear that we can do much
more than this in the data-scan stage. Why not do filter and
field-access while scanning the data.



Figure 4. query plan before

The query plan after pushing down filter and field-access
is illustrated in figure 5. This time, data-scan() performs all
most all the logic in the query plan. When only looking at
the data-scan() stage, the logic is similar to hand-written
code which is commented as pseudo-code in figure 5.

Figure 5. query plan after pushdown

In addition, the power of pushing down filter and field-
access is actually more general than the pattern 1 shows.
For any complex query plan with filter and field-access, the
filter part and field-access part can be pushed down to data-
scan() stage, which will avoid the tedious assign(), project()
chain in the query plan.

3.2. Pattern 2: Query with Quantifier

The second pattern is for queries with a quantifier
(SOME/EVERY).

Figure 6. query pattern 2

Figure 7 shows an example of query pattern 2.
t.entities.hashtags in the example is an array of objects
illustrated in figure 8.

Figure 7. query pattern 2 example

Figure 8. hashtag structure

Since the hashtags is still an array, we cannot directly
apply the condition to it. For this kind of query, asterixDB
will generate a subplan in the query plan to unnest the array
and process each object in the array one by one like the
figure 9.1 shows. What we will do is to put the entire subplan
logic into the data-scan stage.

The new data-scan stage is illustrated in figure 9.2. When
a tweet is read, we will first get its hashtags. We implement
a new function called for-each to access each object inside
the hashtags and evaluate the condition at the same time.

Figure 9. query plan of pattern 2 example

3.3. Pattern 3: Query with Aggregation

The last pattern is for query with aggregation.

Figure 10. query pattern 3



For this kind of query, we will push the count function
to data-scan, which means we will count the number while
scanning the data.

4. Empirical Verification

4.1. Dataset

• Tweets data: Each tweet is about 3.78M

4.2. Test Environment

• OS: Linux
• Processor: i7-7567U CPU @ 3.50GHz, 2 cores
• Memory Size: 15GB

4.3. Benchmark for Pattern 1

The first benchmark will only test the performance of
pushing down filter. The benchmark is as follows. We
increase the selectivity from test 1 to test 4.

Figure 11. benchmark for pushing down filter

The result is illustrated in figure 12. For 70G data in 1
partition, we get 8.56% speed-up in average; For 70G data
in 2 partitions, we get 3.37% speed-up in average, which is
relatively mild.

Figure 12. results of pushing down filter

The second benchmark will only test the performance of
pushing down field-access. Figure 13 shows the benchmark.
We test large-field access, small-field access and nested-field
access.

We get slightly better speed-up ratio as the figure 14
shows this time. And there is not much difference between
different kinds of field-accesses.

Figure 13. benchmark for pushing down field-access

Figure 14. results of pushing down field-access

Third, we test queries with both filter and one field-
access as the figure 15 shows. This time, we get better speed-
up ratio by adding the power of pushing down filter and
pushing down field-access which is illustrated in figure 16.

Figure 15. benchmark for pushing down both filter and field-access

Figure 16. results of pushing down both filter and field-access

At last, we test queries with a filter and two field-
accesses which means there will be larger amount of data
that we will push down. The benchmark is illustrated in
figure 17.

The speed-up is significant this time. As the figure 18
shows, for 70G data in one partition, we get a 28.10% speed-
up; For 70G data in two partitions, we get a 11.61% speed-
up. This is actually much better than our last benchmark.
Why does that happen? It is because we only save one
field passing time in the last benchmark while we save two
fields passing time in this benchmark. The better speed-up
ratio when it moves to two field-accesses also proves our



Figure 17. bechmark for pushing down both filter and field-access 2

motivation that memory copy between operators is indeed
an expensive operation.

Figure 18. results of pushing down both filter and field-access 2

4.4. Benchmark for Pattern 2

To test the performance of pushdown for queries with a
quantifier, we will apply the benchmark as figure 19 shows.

Figure 19. benchmark for query pattern 2

The result is shown in figure 20. Note that we add a
benchmark query:

SELECT count(t.entities.hashtags) FROM Tweets as t

denoted as io in the result graph. The benchmark query
aims to measure the time of query IO plus the time to access
the hashtags attribute. This time serves as a bottom-line of
our optimization since it is the time we must spend and
cannot be accelerated.

As figure 20 shows, for 70G data in one partition, we
can get 34.6% speed-up for SOME and 31.3% speed-up
for EVERY in average; for 70G data in two partitions, we
can get 18.7% speed-up for SOME and 19.1% speed-up for
EVERY in average.

The result seems great, but we also get a strange observa-
tion – Why moving to two partitions always brings a worse

Figure 20. results of pushing down subplan

performance? More specifically, why does 2-partitions al-
ways hurt the performance of pushdown but benefit the
performance of baseline implementation?

It is because although multiple partitions will utilize
CPU better, it brings competition to IO (Partitions share the
same buffer cache and memory budget). Since pushdown
has done quite well on the CPU, it is IO-bounded. However,
the original implementation is CPU-bounded. Thus, the IO-
bounded pushdown will be hurt because of the competition
between different partitions while the original implementa-
tion will benefit because of the better utilization of CPU.

4.5. Benchmark for Pattern 3

For query pattern 3, we adopt a quite simple benchmark
as figure 21 shows. And we test lots of new ideas on this
simple benchmark.

Figure 21. benchmark of pushdown count

First, we pushdown the count function to the data-scan
stage, which means we count the record when scanning
the data. It is denoted as pushdownCount in the figure
22. Besides we also want to see the evaluator-creation
overhead (AsterixDB creates an evaluator to evaluate each
expression). The first attempt is to substitute asterixDB
greaterThan evaluator by pure JAVA >.It is denoted as
removeGt in the figure 22. The second attempt is to push
down the count function, which means we count records
while scanning the data. It is denoted as pushCount in the
figure 22. In additional, we add a baseline query called
pureCount:

SELECT count(*) FROM Tweets

to evaluate the base time we need to consume.
The results in figure 22 gives us lots of insight. First

of all, removeGt seems to have little improvement but



pushCount can give a close performance to pureCount.
Thus, the evaluator overhead for Asterix largerThan is mild.
Second, our pushdownCount makes sense since its time is
really close to the pureCount.

Figure 22. results of pushdown count

5. Conclusion

To reduce the expensive memory copy and virtual func-
tion call costs between operators, we develop a method
called pushdown to combine multiple operators in query
plans. We define three query patterns and apply specific
pushdown strategies to them. Pushdown method can achieve
at most 34.6% speed-up, which is very significant. It’s worth
mentioning that pushdown has made the execution time very
close to the pure IO time. If we want to optimize the time
further, we need to reduce either the field evaluation time
or the IO cost.

References

[1] Agarwal, S., Liu, D. and Xin, R. (2019). Apache Spark as a Compiler:
Joining a Billion Rows per Second on a Laptop. [online] Databricks.
Available at: https://databricks.com/blog/2016/05/23/apache-spark-
as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
[Accessed 27 Aug. 2019].

[2] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and R. Vernica.
Hyracks: A Flexible and Extensible Foundation for Data-Intensive
Computing. In ICDE, pages 1151–1162, 2011.


