
Design Document

Design

Task 1: Efficient Alarm Clock

Data structures and functions

Add one attribute sleep_ticks to the struct thread

I have added a new attribute sleep_ticks at the end of the struct thead. It is int64_t because the
function timer_sleep accepts a parameter which is also int64_t . By default, sleep_ticks has
value 0.

Algorithms

Let's first clarify the problem existed in the current implementation of timer_sleep .

Assume that the current system has implemented the priority scheduler, which means the thread
with the highest priority will always be executed first. The original implementation of timer_sleep
uses thread_yield() in a loop to make a thread sleep for certain ticks, in which the major problem
lies. thread_yield() does not put the current thread to sleep. Instead, it simply puts the current
thread back into the ready queue. Then this thread will be scheduled again. This kind of action falls
into a loop which is called "busy waiting".

In order to tackle this problem, we must put the thread into real sleep and wake it after the number
of ticks set before. My algorithm is as follows.

Add another list called sleep_list to hold all the sleeping threads. When calling timer_sleep ,
first set the sleep_ticks of the thread to be the value of parameter ticks . Then call
thread_block() to put the thread into sleep and push the thread to the sleep_list . At every
timer interrupt, we will iterate the sleep_list , decrease the sleep_ticks by 1, and if
sleep_ticks equals to 0, we will call thread_unblock() which unblocks the thread and put it into
the ready queue.

Synchronization

struct thread

 {

 /* ----- Omit Attributes Defined in Pintos Source Code ------ */

 /* --------------- NEW ATTRIBUTE ---------------- */

 int64_t sleep_ticks; /* ticks that a thread will sleep*/

 };

Gong Yue
Project 1: Threads

sleep_list

The sleep_list is a resource which can be accessed concurrently by more than 1 thread. Thus,
there is synchroniztion problem since the list implemention in pintos is not thread-safe.

Rough Solution:

Each thread should first acquire a lock before operating on the list. And when it finishes the
operation, it should release the lock. This ensures that only one thread can operate on the list at one
time. Therefore, guarantee the correctness of program.

Rationale

Alternative 1: Do not use sleep_list , add the sleeping thread into all_list directly. Call
thread_foreach() to do the check at every timer interrupt.

Drawback: thread_foreach() needs to iterate through all threads and check whether its status is
THREAD_BLOCK and check its sleep_ticks . It generates a large time waste. And the code that runs
in interrupt handlers should be as fast as possible. So, I finally choose creating a sleeping_list
and only do iteration and check on this shorter list each timer interrupt.

Task 2: Priority Scheduler

Data structures and functions

Modify struct thread

Algorithms

1. Higher-priority threads always run before lower-priority threads.

The key points to realize this function is to maintain the order of the ready list.

To maintain the order of the ready list, we need to insert new element to their proper position
instead simply push it at the end of the list. The list.c has provides us a function
list_insert_ordered() to perform this opertion. There are 2 places in which we add new
element to the ready_list . They are thread_unblock() , thread_yield() . Replace the
list_push_back() of thread_unblock() attains our object. Now, our ready_list is always
of descending order. And each time the scheduler will pick the first thread which has the highest
priority to run.

struct thread

 {

 /* ------- Omit Attributes Defined in Pintos Source Code ------- */

 /* --------------- NEW ATTRIBUTE ---------------- */

 int original_priority;

 static struct list lock_holding; /* locks hold by the thread */

 struct lock *lock_waiting; /* lock that the thread is waiting */

 };

Besides, we must also consider preempt scheduler , which ensures a high-priority thread
really preempts. It means when a newly created thread has higher priority or a thread sets its
prority to be higher than the current thread, we should immediatly switch the thread. Re-
schedule only happens when a new thread is add to the ready_list or a thread calls
thread_set_priority() to change the priority. So we should first add a thread_yield at the
end of the thread_set_priority() to re-schedule threads. At first, I want to add a
thread_yield at the end of thread_unblock() because it adds a new element to the
ready_list . However I noticed that the annotation said this function does not preempt the
running thread. So I add a piece of code to reschedule threads at the end of thread_create()
instead.

2. Priority Donation

1. Changing thread's priority

There are only two situations when the priority donation is triggerd. The one is Acquire a
Lock , the other is Release a Lock .

When acquring a lock, if the thread with higher priority (abbr. HP) wants to acquire a lock
which is held by a lower priority (abbr. LP) thread, the HP thread will set the priority of the
LP to be the same as HP. Then, our scheduler will choose the original LP thread to run.
After the original release the lock, its priority will be set based on my design scheme which
will be introduced later. Then, the HP thread can get the lock the continue to run.

2. Acquire a Lock

Key: Make sure the semaphore waiter list is in descending order

When a thread acquires a lock, if the lock is available, the current thread get the lock,
change the semaphore value of the lock to be 0. Then when other threads also calls
lock_acquire() , they will be blocked and added to the semaphore waiter.

Now, in my design, I need the semaphore waiter to be an ordered list. So I will call
list_insert_ordered() instead of list_push_back() .

/* Original design in the pintos source code */

while (sema->value == 0)

{

 list_push_back (&sema->waiters, &thread_current()->elem);

 thread_block();

}

When a thread successfully gets the lock, the lock will be added into the thread's
lock_holding list.

When a thread has to sleep to wait the lock being released, set the lock to be the
lock_waiting

When acquring a lock, if the thread with higher priority (abbr. HP) wants to acquire a lock
which is held by a lower priority (abbr. LP) thread, the HP thread will set the priority of the
LP to be the same as HP. And the lock will be added into the thread lock_waiting list.
After the donation, the original LP thread will run firstly. The original LP thread will first
check if the lock_waiting attribute is NULL. If it isn't, the original LP shoud set the priority
of the thread holding the lock_waiting to be the same as LP thread.

3. Release a Lock

When a thread releasing a lock, we need to reset the thread priority based on elements in
the lock_holding .

First, remove the lock released from the lock_holding list.

Then, Let's talk about 2 different situations.

a. After removing, there is no element in the list.

We simply set the priority of the thread to be the original priority .

b. After removing, there are more than 1 element in the list.

For each lock in the list, we can access the front value of the semaphore waiter list, which is
the waiting thread with the highest priority. Thus, we can get the maximum among these
front values. Set the thread priority to be the maximum value.

Synchronization

/* Now sema->waiters is a list with descending order */

while (sema->value == 0)

{

 list_insert_ordered (&sema->waiters, &thread_current()->elem);

 thread_block();

}

pseudocode

max_priority = 0

for lock in lock_holding:

 thread = front(lock -> sema -> waiter)

 candidate = thread -> priority

 if candidate > max_priotity:

 max_priority = candidate

return max_priority

First Let's consider the new attributes added by my design. I only add locks_holding and
lock_waiting to the struct thread. Because these attributes are in the thread struct, it can not be
accessed by more than 2 accesses. So my modification won't generate synchronization issues.

There are list operations in semaphore . For example, sema_down() pushes a new thread to the
waiter list. However, we could see that sema_down() calls intr_disable() to disable instruction
which ensures synchronization.

Rationale

My design is clear and easy to implement.

Task 3: Multi-level Feedback Queue Scheduler

Data structures and functions

Algorithms

Multple parts of this scheduler require data to be updated after a certain number of timer ticks.
Thus, we use timer interrupt handler timer_interrupt() to implement it.

Overview

Initialize:

Iterate all threads, put threads with same priority into the same queue.

Then, at every timer interrupt, update the priority of every thread. And also update queues.

struct thread

 {

 /* ------ Omit Attributes Defined in Pintos Source Code ------ */

 /* --------------- NEW ATTRIBUTE ---------------- */

 fixed_t recent_cpu; /* nice value of the thread */

 int nice; /* recent_cpu of the thread */

 };

persudocode

for thread in ready_list:

 queues[thread->priority].push_back(thread)

Choosing the queue with highest priority the pop the front thread to run.

Update priority

The priority of each thread will be updated every fourth clock tick accouding to the
following fomula.

Update recent_cpu

recent_cpu is incremented by 1 every tick for the running thread only, unless the idle thread
is running.

recent_cpu is recalculated based on the following fomular once per second (100 timer ticks).

Update load_avg

It is updated according to the following formular once per second.

Since load_avg is system-wide, not thread-specific, I don't put it into the struct thread. Instead,
I add a static variable called load_avg in the thread.c.

Synchronization

queues

queues is an array holds all the priority list. The priority list can be accessed by more than 2 threads
concurrently. Therefore, one thread must accquire a lock when operating on the list.

recent_cpu and nice are inside one thread. Thus there are no synchronization problems.

load_avg is updated inside the timer interrupt handler. Thus there are no synchronization
problems.

Rationale

persudocode

for thread in ready_list:

 original_priority = thread -> priority

 update_priority(thread)

 if original_priority != thread -> priority: # if the priority has changed

 queues[original_priority].delete(thread)

 queues[thread->priority].push_back(thread)

priority = PRI_MAX - (rencent_cpu/4) - (nice*2)

recent_cpu = (2*load_avg)/(2*load_avg+1)*recent_cpu + nice

load_avg = (59/60)*load_avg + (1/60)*ready_threads

timer ticks R(A) R(B) R(C) P(A) P(B) P(C) thread to run

0 0 0 0 63 61 59 A

4 4 0 0 62 61 59 A

8 8 0 0 61 61 59 B

12 8 4 0 61 60 59 A

16 12 4 0 60 60 59 B

20 12 8 0 60 59 59 A

24 16 8 0 59 59 59 C

28 16 8 4 59 59 58 B

32 16 12 4 59 58 58 A

36 20 12 4 58 58 58 C

In my design, update queues is a little inefficient. I need O(n) time to find the thread to perform
delete action. The better solution is that I can implement a real priority queue using heap. Then O(log
n) insertion and O(logn) deletion.

The MLFQS problem

Did any ambiguities in the scheduler specification make values in the table (in the previous
question) uncertain? If so, what rule did you use to resolve them?

Yes. there are always threads of the same priority.

My solution is to follow the FIFO principle. The thread first enters the priority queue (of a certain
value) will be executed first.

Questions About Pintos Source Code

Tell us about how pintos start the first thread in its thread system (only consider the
thread part).

In the init.c which is located at the thread folder, funtion thread_init() has been called to initialize
a thread which is exactly the first thread in the pintos thread system.

The function thread_init() is defined at thread.c. Before thread_init() , a static variable called
initial_thread has been declared. The detailed declaration is as follows:

static struct thread *initial_thread;

In the thread_init() , it sets up a thread structure for the intial_thread.

Consider priority scheduling, how does pintos keep running a ready thread with highest
priority after its time tick reaching TIME_SLICE?

Let's first look at the function thread_tick() . It is called by the timer interrupt handler at each
timer tick. Look at the following slice of code.

When the thread tick reaches TIME_SLICE, thread_tick() will call intr_yield_on_return() ,
which will set the variable yield_on_return to be true. yield_on_return == true means that we
could request that a new process be scheduled just before the interrupt returns. The following slice
of code in the intr_handler() reveals the secret of yield_on_return .

The function thread_yield calls schedule() to decide the next thread to run. In the context of
priority scheduling, the thread with the highest priority will be chosen. Therefore, pintos keeps
running a ready thread with highest priority after its time tick reaching TIME_SLICE.

What will pintos do when switching from one thread to the other? By calling what
functions and doing what?

1. By calling switch_threads

2. It saves registers on the stack, saves the CPU's current stack pointer in the current struct
thread's stack member, restores the new thread's stack into the CPU's stack pointer, restores
registers from the stack and returns.

Ref: CS302-OS-project1-guide

intial_thread = running_thread(); // returns a running thread

/*Does basic initialization of initial_thread having default priority with name

"main"*/

init_thread(initial_thread, "main", PRI_DEFAULT);

initial_thread->status = THREAD_RUNNING; // change the thread status to

THREAD_RUNNING

initial_thread->tid = allocate_tid(); // allocate tid for the initial_thread

if (++thread_ticks >= TIME_SLICE)

 intr_yield_on_return();

if (yield_on_return)

 thread_yield();

How does pintos implement floating point number operation

Basic idea: treat the rightmost 16 bits of an integer to represent fraction.

1. Convert a value to fixed-point value.

Left shift the integer for 16 bits. (the fraction bits are all 0)

2. Add 2 fixed-point value or substract 2 fixed-point value.

simply do A+B and A-B

3. Add a fixed-point value A and an int value B (Substract is similar).

first convert the int value to fixed-point value, then add them together.

4. Multiply a fixed-point value A by an int value B. (Divide is similar)

multiply directly

5. Multiply two fixed-point value (simliar to Divide)

To avoid overflow, it first converts A to int_64 . After multiplying, right shift 16 bits to set the
number of fraction bits to be 16.

6. Get the integer part of a fixed-point value

Right shift the fixed-point for 16 bits

7. Get rounded integer of a fixed-point value

If A >= 0, add 0.5 to the value and do shift. If A < 0, substract A by 0.5 and do shift. The final
result is rounded it the nearest integer.

What do priority-donation test cases(priority-donate-chain
and priority-donate-nest) do and illustrate the running
process

Priority-donate-chain

What does it do ?

It constructs a lock chain. Each thread[i] holds the lock[i] and attempts to accquire lock[i-1] which is
held by thread[i-1], except for thread[0], which is held by the main thread. Because the lock is held,
thread[i] donates its priority to thread[i-1], which donates to thread[i-2], and so on until the main
thread receives the donation.

What does it illustrate ?

1. We should add some data structure to record locks one thread holds and locks one thread is
waiting for.

2. If one thread holds no locks after releasing, it should be set to the original priority directly.

Priority-donate-nest

What does it do ?

Low-priority main thread L acquires lock A. Medium-priority thread M then acquires lock B then
blocks on acquiring lock A. High-priority thread H the blocks on acquiring lock B. Thus, thread H
donates its priority to M which in turn donates it to thread L.

What does it illustrate ?

1. Priority donation can be in a chain form. So we need to add some data structure to record locks
one thread holds and locks one thread is waiting for.

Final Report

Group member

11611908 ὅ勏
11612611 ᩈސ䥤

Task 1: Argument passing
Data structure

No new data structure is needed.

Algorithm

Use strtok_r to split the input argument string, and got each argument. Then push them to the
process stack by the order according to the stack structure below

Synchronization

No synchronization operation needed.

Rationale

We use smart method to implement word-align (bit operation => ptr&0xfffffffc).

Task 2: Process Control Syscalls

Gong Yue
Project 2: User Programs

Data structure

Add a children list in struct thread

Add a struct to record the information of child process

Algorithm

The syscall stack is as below

We will first get the SYS_CODE to decide which syscall is called. The we will read the arguments and
do validation. The major challange here is to valify whether the argument pointer is valid. We should
not only check whether the address of the pointer is a valid user address, but also check whether it is
mapped in the kenerl address.

The most difficult part is to implement exec and wait . When exec , the parent process must wait
until the child process finished load operation. wait is to wait for a child process to finish, then the
parent process can proceed executing.

Synchronization

When exec , the parent process must wait until the child process finished load operation. wait is to
wait for a child process to finish, then the parent process can proceed executing.

Task 3: File Operation Syscalls

struct child_process
 {
 tid_t tid; /* Thread identifier. */
 struct list_elem childelem; /* List element for children list. */
 bool exited; /* Whether it has exited*/
 bool waited; /* Whether it has waited for some
child. */
 struct semaphore sema; /* Wait semaphore. */
 int exit_status; /* Status when it exits. */
 };

f->esp -----------------------------
 | SYS_CODE |

 | arg[0] ptr -OR- int_value |

 | arg[1] ptr -OR- int_value |

 | arg[2] ptr -OR- int_value |

Data Stucture

In the struct thread , add a file list which records files the process opens.

Algorithm

The implementaion of file operation is straightforward because the basic implementation is given in
the filesys/file.c . The only point we need to pay attention to is the synchronization. We set a
global lock named filesys_lock . Every time a process wants to user file operation syscall, it must
firstly acquire the filesys_lock .

Synchronization

The only point we need to pay attention to is the synchronization. We set a global lock named
filesys_lock . Every time a process wants to user file operation syscall, it must firstly acquire the
filesys_lock .

Questions

What exactly did each member do? What went well, and what could be
improved?

Qiyang he is mainly responsible for task1 and task2

Yue Gong is mainly responsible for task3.

We corporate well, finished each function step by step. We could furthur refactor our code to make it
more readable. Currently, the arguments check part is too complex. Some part of the code can be
more elegant.

Does your code exhibit any major memory safety problems (especially
regarding C strings), memory leaks, poor error handling, or race conditions?

No. We will free every page that was allocated before. And we use semaphore and lock to solve race
conditions.

Did you use consistent code style? Your code should blend in with the
existing Pintos code. Check your use of indentation, your spacing, and your
naming conventions.

struct file_control_block
{
 struct file *process_file;
 int fd;
 struct list_elem file_elem;
};

Yes. We follow the pintos coding style.

Is your code simple and easy to understand?

Yes. We had no redundant code and each line of our codes has clear puporse.

If you have very complex sections of code in your solution, did you add
enough comments to explain them?

Yes. For complex section, we always split it into small and simple sections. For nearly every code
block, we have clear comment. You can easily get the idea of our implementation.

Did you leave commented-out code in your final submission?

Yes. Our final submission has clear and detailed comments.

Did you copy-paste code instead of creating reusable functions?

We encapsulate every common procedure into reusable functions.

Are your lines of source code excessively long? (more than 100 characters)

No.

Did you re-implement linked list algorithms instead of using the provided
list manipulation

No. We use the original linked list algorithm.

	Design Document
	Design
	Task 1: Efficient Alarm Clock
	Task 2: Priority Scheduler
	Task 3: Multi-level Feedback Queue Scheduler

	The MLFQS problem
	Questions About Pintos Source Code
	How does pintos implement floating point number operation
	What do priority-donation test cases(priority-donate-chain and priority-donate-nest) do and illustrate the running process
	Priority-donate-chain
	Priority-donate-nest

