Q‘*‘\{\‘\ UCI Samuel;

S ool of Engineering Speed Up Query Execution By Pushdown In AsterixDB

University of California, Irvine Yue Gong 1; Wail Alkowaileet?; Michael Carey?
1Southern University of Science and Technology, 2Univeristy of California, Irvine

After . Resuts
distribute result [$$15]

-- DISTRIBUTE RESULT PARTITIONED |

AsterixDB is a Big Data Management System (BDMS). To evaluate a query, the compiler will

compile it into a series of operators(e.g. aggregation, filter, projection). Then, the query exchange 1 Partition 70G data 2 Partitions 70G data
. . . . - = 130 y 5 130 J o
execution engine(hyracks) will execute each operator from bottom to top and the data will -~ ONE_TO ONE_EXCHANGE |PARTITIONED . e 4 28.10% N 4 11.61%
.. . . data- 15]1<- 16, ty 15] <- TweetsO oL t i . .
move between operators. The whole process is illustrated in figure 1. s e [l i e SRS = wimsssmeaa s s e
condition (gt($$t.getField("user").getField("friends count"), 100)) 110 110 10142
’ 99.56
project ($$t.getField("text")) l 100 100 921 p— o
copy copy Copy -- DATASOURCE_SCAN |PARTITIONED| %0 %0 87.5 86.9 86.1
. . Ll for t in tweets: 80 - ' e %0
[select]“[dssign J‘— { prOJECt]‘ —[data-scan} -- ONE TO ONE EXCHANGE |PARTITIONED) , 20 . [20
empty-tuple-source lf t = l'lser = frlends_count > l 0 0 : testl test2 test3 test4 testl test2 test3 test4
-—- EMPTY TUPLE SOURCE |PARTITIONED| prOjeCt(t.text) mpushdown m baseline mpushdown m baseline
Figure 1. dataflow example . . -
Figure 3. query plan after pushdown Figure 9. benchmark for pushdown selection and projection
This implementation provides great programming flexibility since it decouples operators. 1 Partition 70G data 2 Partitions 70G data
performance saues since there are expensive memory copes betwean operatoreand | [NN 1= - A R el e
performance issues since there are expensive memory copies between operators and 130 12141 130
. 120 114.94 — 120 113.1114.58
expensive virtual function calls *. We mainly explore three kinds of query patterns to perform pushdown. 10 } 10 105.63%°7° r
To tackle this problem, we develop a method called pushdown to combine several operators The first pattern is mentioned in the introduction. For queries with projection and filter, we . - — . s 2
for queries matching certain patterns. More specifically, we push execution logic down to the will push filter and project operator down to the data-scan. 80 75.86 75.86 80
data-scan stage as much as possible to reduce the number of operators. By applyin . . .
g p p y pp y g SE LECT VALUE t * teXt — prOJeCtlon " some every o some every

pushdown, the performance of query execution can be improved significantly. FROM Tweets as t

filter «—(WHERE) t.user.friends_count > 100; _
Figure 10. benchmark for pushdown subplan

. Figure 4. query pattern one
Introduction Time

mio mremoveSubplan m pushdown baseline mio mremoveSubplan mpushdown baseline

. . . . observation 1
The second pattern is for queries with quantifier. e 2292 oushdown count is very
SELECT t 7 close to pureCount

SELECT VALUE t.text eriyie S Nested Array 7 7032
FROM Tweets as t . L . ; 68
) WHERE|SOME|ht in t.entities.hashtags SATISFIES ht.text = "trump 66
WHERE t.user.friends_count > 100; o o4

igure 5. query pattern two pushdown removeGt pushCount removeGtAndEval pureCount

Figure 2. query with projection and selection For this kind of query, asterixDB used to generate a long subplan in the query plan. Since _
Before t.entities.hashtags is a array of hashtag object, AsterixDB uses a subplan to unnest the array Figure 11. benchmark for pushdown count

E—— 1t [$515) and process each object inside the array one by one. To avoid expensive memory copy cost,
1Stripbucte resu .
we will push all the subplan down to data-scan.

subplan { . .
exchange e [T —— for hashtag in hashtags:

- . - boolean = (hashtag.get("text") == "trump") . .
S L el Bt AL ol e 9-get! ° As we can see from the results, pushdown can improve the performance of queries
. N $$15 select (eq($$29, "trump")) boolean arr.append(boolean)
project ([) -- STREAM_SELECT |LOCAL for boolean in boolean arr: significantly. There is an interesting observation that 2 partitions always hurt the performance
-- STREAM PROJECT PARTITIONED assign [$$29] <- [$3ht.getField("text")] : TL == "QOME"
lect |(gt($$t t’F' 1d(" "') tField("friend £y, 100)) - ASSIGN |LOCAL| 1f quantifier - SOME . of pushdown but benefit the performance of baseline implementation. It is because although
selecC g .ge le user .ge le riends coun ' unnest $$ht <- scan-collection($$28) return true when meeting one true value
~ STREAM SELECT |PARTITIONED| o UNNEST |LOCAL| if quantifier == "EVERY": multiple partitions will utilize CPU better, it brings competition to 0. Since pushdown has
nested tuple source : 1 1+ 1 - 151 1 1 1 _
assign |[$515] <- [$$t.getField("text")] o e nce | mocas return false when meeting one false value Soneguc;teT\k/]vell Oy? tlhg ISPU, (Ijt |; 10 bhodunded. II-Ilcl)oquver, tbhe orlgm?cl ||:nplementat|on|;s CPU
i) ounded. Thus, the |O-bounded pushdown will be hurt because of the competition between
pushdown -- ASSIGN |PARTITIONED| SUBPLAN |PARTITIONED | Figure 8. pseudocode for data-scan . . ’ . . p . .] . P
project ([S$$t]) assign [§528] <- [§St.getField(“entitias"}.getPiald("hashtags")] t different partitions while the original implementation will benefit because of the better
-- ASSIGN PARTITIONED] HH H
-- STREAM PROJECT |PARTITIONED| broject (($5t1) utilization of CPU.
exchange -- STREAM PROJECT |PARTITIONED| data-scan [$$t]<-[$$27, St] <- TweetsOpen.Tweets
exchange e . " NP . " "
-- ONE TO ONE EXCHANGE |PARTITIONED | -- ONE_TO_ONE_EXCHANGE |PARTITIONED | condition (foreaCh(zzt;zz;i::;sz:;%;Z:F;z::iiif)haf:::\:..;;) Conclusions
> data-scan []<—[$$16, $$t] <- TweetsOpen.Tweets data-scan []<-[$$27, $$t] <- TweetsOpen.Tweets - project ($§t}
> i -- DATASOURCE SCAN |PARTITIONED
-~ DATASOURCE_SCAN |PARTITIONED| . . . , To reduce the expensive memory copy cost between different operators, we develop a
exchanae Figure 6. subplan for query with quantifier Figure 7. data-scan after pushdown . - -
g method called pushdown to combine multiple operators. We define three query patterns and
-= ONE_TO OTE DU o The third pattern i _ th ¢ function. For this kind of " hth . apply specific pushdown strategies to them. Pushdown method can achieve at most 34.6%
empty-tuple-source e third pattern is queries with count function. For this kind of query, we will push the coun L L .
pEIylPTYpTUPLE s |Eresns) functi tp the dat 9 Hich " th o 9 hY’I -p the dat speed-up, which is very significant. It’s worth mentioning that pushdown has made the
-- EV unction to the data-scan, which means we will count the number while scanning the data. L : . .
’ & execution time very close to the pure |10 time. If we want to optimize the time further, we
Figure 3. query plan before need to reduce either the field evaluation time or the IO cost.
Contact References
Yue Gong 1. Agarwal, S,, Liu, D. and Xin, R. (2019). Apache Spark as a Compiler: Joining a Billion Rows per Second on

) ;) a Laptop. [online] Databricks. Available at: https://databricks.com/blog/2016/05/23/apache-spark-as-a-
Southern University of Science and Technology compiler-joining-a-billion-rows-per-second-on-a-laptop.html [Accessed 27 Aug. 2019]. S el] W
Email: yvetteyue1998@outlook.com ™

© POSTER TEMPLATE BY GENIGRAPHICS® 1.800.790.4001 WWW.GENIGRAPHICS.COM

