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AsterixDB is a Big Data Management System (BDMS). To evaluate a query, the compiler will 
compile it into a series of operators(e.g. aggregation, filter, projection). Then, the query
execution engine(hyracks) will execute each operator from bottom to top and the data will
move between operators. The whole process is illustrated in figure 1.

This implementation provides great programming flexibility since it decouples operators. 
Thus, we can implement any query by combining these operators. However, it also brings 
performance issues since there are expensive memory copies between operators and
expensive virtual function calls 1.
To tackle this problem, we develop a method called pushdown to combine several operators 
for queries matching certain patterns. More specifically, we push execution logic down to the 
data-scan stage as much as possible to reduce the number of operators. By applying 
pushdown, the performance of query execution can be improved significantly.

Abstract

We mainly explore three kinds of query patterns to perform pushdown.
The first pattern is mentioned in the introduction. For queries with projection and filter, we
will push filter and project operator down to the data-scan.

The second pattern is for queries with quantifier.

For this kind of query, asterixDB used to generate a long subplan in the query plan. Since
t.entities.hashtags is a array of hashtag object, AsterixDB uses a subplan to unnest the array
and process each object inside the array one by one. To avoid expensive memory copy cost,
we will push all the subplan down to data-scan.

The third pattern is queries with count function. For this kind of query, we will push the count
function to the data-scan, which means we will count the number while scanning the data.

Methods

As we can see from the results, pushdown can improve the performance of queries
significantly. There is an interesting observation that 2 partitions always hurt the performance
of pushdown but benefit the performance of baseline implementation. It is because although
multiple partitions will utilize CPU better, it brings competition to IO. Since pushdown has
done quite well on the CPU, it is IO-bounded. However, the original implementation is CPU-
bounded. Thus, the IO-bounded pushdown will be hurt because of the competition between
different partitions while the original implementation will benefit because of the better
utilization of CPU.

Discussion

To reduce the expensive memory copy cost between different operators, we develop a
method called pushdown to combine multiple operators. We define three query patterns and
apply specific pushdown strategies to them. Pushdown method can achieve at most 34.6%
speed-up, which is very significant. It’s worth mentioning that pushdown has made the
execution time very close to the pure IO time. If we want to optimize the time further, we
need to reduce either the field evaluation time or the IO cost.
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