
Speed Up Query Execution By Pushdown In AsterixDB
Yue Gong 1; Wail Alkowaileet2; Michael Carey2

1Southern University of Science and Technology, 2Univeristy of California, Irvine

Yue Gong
Southern University of Science and Technology
Email: yvetteyue1998@outlook.com

Contact
1. Agarwal, S., Liu, D. and Xin, R. (2019). Apache Spark as a Compiler: Joining a Billion Rows per Second on 

a Laptop. [online] Databricks. Available at: https://databricks.com/blog/2016/05/23/apache-spark-as-a-
compiler-joining-a-billion-rows-per-second-on-a-laptop.html [Accessed 27 Aug. 2019].

References

AsterixDB is a Big Data Management System (BDMS). To evaluate a query, the compiler will 
compile it into a series of operators(e.g. aggregation, filter, projection). Then, the query
execution engine(hyracks) will execute each operator from bottom to top and the data will
move between operators. The whole process is illustrated in figure 1.

This implementation provides great programming flexibility since it decouples operators. 
Thus, we can implement any query by combining these operators. However, it also brings 
performance issues since there are expensive memory copies between operators and
expensive virtual function calls 1.
To tackle this problem, we develop a method called pushdown to combine several operators 
for queries matching certain patterns. More specifically, we push execution logic down to the 
data-scan stage as much as possible to reduce the number of operators. By applying 
pushdown, the performance of query execution can be improved significantly.

Abstract

We mainly explore three kinds of query patterns to perform pushdown.
The first pattern is mentioned in the introduction. For queries with projection and filter, we
will push filter and project operator down to the data-scan.

The second pattern is for queries with quantifier.

For this kind of query, asterixDB used to generate a long subplan in the query plan. Since
t.entities.hashtags is a array of hashtag object, AsterixDB uses a subplan to unnest the array
and process each object inside the array one by one. To avoid expensive memory copy cost,
we will push all the subplan down to data-scan.

The third pattern is queries with count function. For this kind of query, we will push the count
function to the data-scan, which means we will count the number while scanning the data.

Methods

As we can see from the results, pushdown can improve the performance of queries
significantly. There is an interesting observation that 2 partitions always hurt the performance
of pushdown but benefit the performance of baseline implementation. It is because although
multiple partitions will utilize CPU better, it brings competition to IO. Since pushdown has
done quite well on the CPU, it is IO-bounded. However, the original implementation is CPU-
bounded. Thus, the IO-bounded pushdown will be hurt because of the competition between
different partitions while the original implementation will benefit because of the better
utilization of CPU.

Discussion

To reduce the expensive memory copy cost between different operators, we develop a
method called pushdown to combine multiple operators. We define three query patterns and
apply specific pushdown strategies to them. Pushdown method can achieve at most 34.6%
speed-up, which is very significant. It’s worth mentioning that pushdown has made the
execution time very close to the pure IO time. If we want to optimize the time further, we
need to reduce either the field evaluation time or the IO cost.

Conclusions

Introduction

Results

Figure 2. query with projection and selection

Figure 3. query plan before

Figure 1. dataflow example

Before

pushdown

Figure 3. query plan after pushdown

After

Figure 4. query pattern one

projection

filter

Figure 5. query pattern two

Nested Array

Figure 6. subplan for query with quantifier Figure 7. data-scan after pushdown

Figure 8. pseudocode for data-scan

Figure 9. benchmark for pushdown selection and projection

34.6% 31.3%

Figure 10. benchmark for pushdown subplan

28.10%

Figure 11. benchmark for pushdown count

observation 1
pushdown count is very
close to pureCount

observation 2
Evaluate the field access is
the performance bottleneck

11.61%

18.7% 19.1%


