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AsterixDB is a Big Data Management System (BDMS). To evaluate a query, the compiler will

compile it into a series of operators(e.g. aggregation, filter, projection). Then, the query exchange 1 Partition 70G data 2 Partitions 70G data
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execution engine(hyracks) will execute each operator from bottom to top and the data will -~ ONE_TO ONE_EXCHANGE |PARTITIONED . e 4 28.10% N 4 11.61%
.. . . data- 15]1<- 16, ty 15] <- TweetsO oL t i . .
move between operators. The whole process is illustrated in figure 1. s e [l i e SRS = wimsssmeaa s s e
condition (gt($$t.getField("user").getField("friends count"), 100)) 110 110 10142
’ 99.56
project ($$t.getField("text")) l 100 100 921 p— o
copy copy Copy -- DATASOURCE_SCAN |PARTITIONED| %0 %0 87.5 86.9 86.1
. . Ll for t in tweets: 80 - ' e %0
[ select ]“[ dssign J‘— { prOJECt ]‘ —[data-scan} -- ONE TO ONE EXCHANGE |PARTITIONED ) , 20 . [ 20
empty-tuple-source lf t = l'lser = frlends_count > l 0 0 : testl test2 test3 test4 testl test2 test3 test4
-—- EMPTY TUPLE SOURCE |PARTITIONED| prOjeCt(t.text) mpushdown m baseline mpushdown m baseline
Figure 1. dataflow example . . -
Figure 3. query plan after pushdown Figure 9. benchmark for pushdown selection and projection
This implementation provides great programming flexibility since it decouples operators. 1 Partition 70G data 2 Partitions 70G data
performance saues since there are expensive memory copes betwean operatoreand | [ NN 1= - A R el e
performance issues since there are expensive memory copies between operators and 130 12141 130
. . . . . 120 114.94 — 120 113.1114.58
expensive virtual function calls *. We mainly explore three kinds of query patterns to perform pushdown. 10 } 10 105.63%°7° r
To tackle this problem, we develop a method called pushdown to combine several operators The first pattern is mentioned in the introduction. For queries with projection and filter, we . - — . s 2
for queries matching certain patterns. More specifically, we push execution logic down to the will push filter and project operator down to the data-scan. 80 75.86 75.86 80
data-scan stage as much as possible to reduce the number of operators. By applyin . . .
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pushdown, the performance of query execution can be improved significantly. FROM Tweets as t

filter «—(WHERE) t.user.friends_count > 100; _
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Figure 2. query with projection and selection For this kind of query, asterixDB used to generate a long subplan in the query plan. Since _
Before t.entities.hashtags is a array of hashtag object, AsterixDB uses a subplan to unnest the array Figure 11. benchmark for pushdown count

E—— 1t [$515) and process each object inside the array one by one. To avoid expensive memory copy cost,
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we will push all the subplan down to data-scan.
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Figure 3. query plan before need to reduce either the field evaluation time or the IO cost.
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